
The Annals of Statistics
2021, Vol. 49, No. 5, 2870–2884
https://doi.org/10.1214/21-AOS2063
© Institute of Mathematical Statistics, 2021

CONSTRUCTION OF MIXED ORTHOGONAL ARRAYS
WITH HIGH STRENGTH

BY SHANQI PANG1, JING WANG2, DENNIS K. J. LIN3 AND MIN-QIAN LIU4

1College of Mathematics and Information Science, Henan Normal University, pangshanqi@263.net
2College of Mathematics and Science, Shanghai Normal University, wangjing19@126.com

3Department of Statistics, Purdue University, dkjlin@purdue.edu
4School of Statistics and Data Science, LPMC & KLMDASR, Nankai University, mqliu@nankai.edu.cn

A considerable portion of the work on mixed orthogonal arrays applies
specifically to arrays of strength 2. Although strength t = 2 is arguably the
most important case for statistical applications, there is an urgent need for
better methods for t ≥ 3. However, the knowledge on the existence of ar-
rays for t ≥ 3 is rather limited. In this paper, new construction methods for
symmetric and asymmetric orthogonal arrays (OAs) with high strength are
proposed by using lower strength orthogonal partitions of spaces and OAs.
A positive answer is provided to the open problem in Hedayat, Sloane and
Stufken (Orthogonal Arrays: Theory and Applications (1999) Springer) on
developing better methods and tools for the construction of mixed orthogonal
arrays with strength t ≥ 3. Not only are the methods straightforward, but also
they are useful for constructing symmetric or asymmetric OAs of arbitrary
strengths, numbers of levels and various sizes. The constructed OAs can be
utilized to generate more OAs. The resulting OAs have a high degree of flex-
ibility and many other desirable properties. Some selective OAs are tabulated
for practical uses.

1. Introduction. An orthogonal array (OA) OA(N,p
n1
1 p

n2
2 · · ·pnv

v , t) is an array of size
N × n, where n = n1 + n2 + · · ·+ nv is the total number of factors; the first n1 columns have
symbols from {0, . . . , p1 − 1}, the next n2 columns have symbols from {0, . . . , p2 − 1} and
so on, with the property that in any N × t subarray, every possible t-tuple occurs an equal
number of times as a row. If p1 = · · · = pv , the OA is said to be a fixed or symmetric OA;
otherwise, it is a mixed or asymmetric OA. If t ≥ 3, the OA is said to be of high strength. For
convenience and simplicity, a symmetric OA of strength t with p levels from the ring Zp is
denoted by OA(N,pn, t). An OA that achieves the Rao bound on the number of runs is said
to be tight (Hedayat, Sloane and Stufken (1999)).

Chêng (1980) provided a precise statement and rigorous proof of the universal optimality
of an OA with variable numbers of symbols as a fractional factorial design. OAs of strength 2
have been studied extensively. A great deal of methods and results can be found in the mono-
graph (Hedayat, Sloane and Stufken (1999)), the handbook (Colbourn and Dinitz (2007)),
and other literature (Hedayat, Stufken and Su (1996), Pang (2004), Zhang (2006, 2007),
Zhang, Lu and Pang (1999) and Zhang, Pang and Wang (2001)). In comparison with those
of strength 2, little is known about OAs of high strength (t ≥ 3). Generally, finding OAs of
high strength is more challenging than finding OAs of strength 2, but they are more useful
than OAs of strength 2 in many areas (Carlet and Chen (2018), Colbourn and Dinitz (2007),
Kuhfeld (2018) and Pang et al. (2018)), such as k-multipartite maximally entangled states
(Goyeneche and Życzkowski (2014)). Construction of these states is an important open and
well-known hard problem with ramifications in the theory of quantum information (Lo, Curty
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and Qi (2012), Riebe et al. (2004) and Zhao et al. (2004)). Pang et al. (2019) answered the
open problem and obtained two and three-uniform states of almost every N qudits from OAs.
Although OA(N, vk, t)’s with N ≤ 3132 or t ≤ 32 and asymmetric OAs with sizes ≤ 424

used in computer science, coding theory (Bierbrauer (2005) and Stinson (2004)), and cryp-
tography have been partly obtained in Aggarwal and Budhraja (2002), the application of
OAs with larger parameters is rather limited because of their scarcity. Hedayat, Sloane and
Stufken (1999) proposed Research Problem 9.33: develop better methods and tools for the
construction of mixed orthogonal arrays with strength t ≥ 3. Besides orthogonality, OAs of
high strength have projection properties of high order and uniformity (Dean et al. (2015),
He and Tang (2014), Lin, Mukerjee and Tang (2009), Lin et al. (2010), Mukerjee, Sun and
Tang (2014) and Liu and Liu (2015)), which are employed in theoretical studies and com-
puter experiments (Sun and Tang (2017) and Tang (1993)). Therefore, some statisticians and
mathematicians are devoted to constructing OAs of high strength (Hedayat, Stufken and Su
(1996), Ji and Yin (2010), Schoen, Eendebak and Nguyen (2010), Suen, Das and Dey (2001),
Suen and Dey (2003) and Yin et al. (2011)). On the other hand, many other designs related to
OAs have been introduced, for example, strong OAs (He and Tang (2013, 2014)), covering
arrays (Ji and Yin (2010) and Yin et al. (2011)), nearly OAs (Wang and Wu (1992)), map-
pable nearly OAs (Mukerjee, Sun and Tang (2014)), compound OAs (Hedayat, Sloane and
Stufken (1999)), and augmented OAs (Stinson (2018)). There are many challenging unsolved
mathematical and statistical problems in this area.

In the data science era, high strength OAs of large size are indispensable. Unfortunately,
little consideration has been given to the construction of asymmetric OAs with strength
greater than two. Therefore, there is a need for the construction of high strength OAs
OA(N,p

n1
1 p

n2
2 · · ·pnv

v , t), especially with some nonprime power pi ’s. In this paper, some
new construction methods of symmetric and asymmetric OAs of high strength are proposed
by using an initial OA with strength t ≥ 1, and orthogonal partitions of spaces and OAs. Not
only are they straightforward, but also they can be used to construct symmetric or asymmetric
OAs with various strengths, larger sizes and flexibility in the choice of factor levels. More-
over, since Theorems 3.1 and 4.1 (as will be shown) do not rely on difference schemes and
finite fields, we can provide OAs having factors whose numbers of levels are nonprime pow-
ers, such as OA(22n+532,234n122, n + 3) for n ≥ 2, OA(4s1+19s2p2,24p2(2s1)2(3s2)2,5)

with an even p. Additionally, using orthogonal partitions of symmetric and asymmetric OAs
enables us to obtain some new infinite families of high strength OAs under certain condi-
tions, such as OA(Npt−1,pmp

n2
2 · · ·pnv

v , t) and OA(25p1p2p3,218p1
1p

1
2p

1
3,3). Some exist-

ing classes of tight arrays and arrays with the maximal numbers of columns can be obtained
as special cases. As a consequence, we provide a positive answer to the open Research Prob-
lem 9.33 in Hedayat, Sloane and Stufken (1999) on developing better methods and tools for
the construction of mixed orthogonal arrays.

The remainder of this paper is organized as follows. Section 2 introduces some notation,
and basic concepts of orthogonal partition, as well as some lemmas useful in this work. Sec-
tion 3 proposes methods primarily for constructing asymmetric OAs using (r + 1)-column
initial OAs of strength r . In Section 4, we study some extended constructions of asymmetric
OAs with relatively more columns for the same strength compared with the arrays in Sec-
tion 3. Sections 3 and 4 also provide an illustrative example and a construction procedure for
each theorem. Section 5 draws some conclusions. Some newly obtained OAs and families of
OAs of high strength are listed in Tables 1 and 2. And matrix forms of a subset of the ar-
rays are displayed on the website http://web.stat.nankai.edu.cn/mqliu/MOA/MixedOA.html.
A numerical verification confirms that these arrays are indeed correct. All proofs of the lem-
mas and theorems can be found in Part II in the Supplementary Material (Pang et al. (2021)).

http://web.stat.nankai.edu.cn/mqliu/MOA/MixedOA.html
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2. Preliminaries. To present our results, we first make some preparations. Let Zn
p de-

note the n-dimensional space over a ring Zp = {0,1, . . . , p − 1}. If necessary, a space
Z

n1
p1 × Z

n2
p2 × · · · × Z

nk
pk can also be seen as an OA(

∏k
i=1 p

ni

i , p
n1
1 p

n2
2 · · ·pnk

k ,
∑k

i=1 ni). Let
AT denote the transpose of the matrix A and Rp = (0,1, . . . , p − 1)T . 0r and 1r represent
r × 1 vectors of 0’s and 1’s, respectively. Ir is the identity matrix of order r . The Kro-
necker product ⊗ and Kronecker sum ⊕ are defined, respectively, as B ⊗ C = (bijC)su×tv

and B ⊕ C = (bij + C)su×tv if B = (bij )s×t and Cu×v are based on Zp . Let K(n,m) =∑n
i=1

∑m
j=1[(ei(n)eT

j (m)) ⊗ (ej (m)eT
i (n))] be a permutation matrix as in Zhang, Pang and

Wang (2001), where ei(n) = (0, . . . ,0︸ ︷︷ ︸
i−1

,1,0, . . . ,0︸ ︷︷ ︸
n−i

)T .

DEFINITION 2.1. Let A be an OA(N,p1 · · ·pn, t). Suppose the rows of A can be parti-
tioned into s submatrices A0, . . . ,As−1 such that each Ai is an OA(N/s,p1 · · ·pn, t1) with
t1 ≥ 0. Then the set {A0,A1, . . . ,As−1} is called an orthogonal partition of strength t1 of A.
In particular, {A0,A1, . . . ,As−1} is said to be a strength t1 orthogonal partition of a space Zn

p

if A = Zn
p .

By using permutation properties of the matrix K(n,m), we present several indispensable
lemmas.

LEMMA 2.1. Assume that there are two sets {A11, . . . ,Ak1} of m × m1 matrices and
{A12, . . . ,Ak2} of n × n1 matrices, with the property that an m1-tuple x occurs u times as
a row in each of the matrices Ai1, and an n1-tuple y occurs v times as a row in all the
matrices A12,A22, . . . ,Ak2. Then there are uv rows (x, y) and uv rows (y, x) in M1 and
M2, respectively, where

M1 =

⎛
⎜⎜⎝

A11 ⊗ 1n 1m ⊗ A12
A21 ⊗ 1n 1m ⊗ A22

· · · · · ·
Ak1 ⊗ 1n 1m ⊗ Ak2

⎞
⎟⎟⎠ and M2 =

⎛
⎜⎜⎝

A12 ⊗ 1m 1n ⊗ A11
A22 ⊗ 1m 1n ⊗ A21

· · · · · ·
Ak2 ⊗ 1m 1n ⊗ Ak1

⎞
⎟⎟⎠ .

LEMMA 2.2. Let A be a matrix of m rows. Then

K(n,m)(A ⊗ 1n) = 1n ⊗ A, and K(m,n)(1n ⊗ A) = A ⊗ 1n.

LEMMA 2.3. Let aj be an mj × 1 vector for j = 1,2,3. Then
(
K(m2,m1) ⊗ Im3

)
(a1 ⊗ 1m2m3,1m1 ⊗ a2 ⊗ 1m3,1m1m2 ⊗ a3)

= (1m2 ⊗ a1 ⊗ 1m3, a2 ⊗ 1m1m3,1m1m2 ⊗ a3).

REMARK 2.1. When the vector aj is replaced by a matrix Aj , Lemma 2.3 also holds.

LEMMA 2.4. Let Aij be an nj × 1 vector for 1 ≤ i ≤ k and 1 ≤ j ≤ 3. Suppose that a
pair (x1, x3) occurs v times as a row in a matrix B below and an element x2 occurs u times
in each Ai2. Then the triple (x1, x2, x3) appears uv times as a row in H . Here,

B =

⎛
⎜⎜⎜⎝

A11 ⊗ 1n3 1n1 ⊗ A13
A21 ⊗ 1n3 1n1 ⊗ A23

· · · · · ·
Ak1 ⊗ 1n3 1n1 ⊗ Ak3

⎞
⎟⎟⎟⎠ ,
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and

H =

⎛
⎜⎜⎜⎝

A11 ⊗ 1n2n3 1n1 ⊗ A12 ⊗ 1n3 1n1n2 ⊗ A13
A21 ⊗ 1n2n3 1n1 ⊗ A22 ⊗ 1n3 1n1n2 ⊗ A23

· · · · · · · · ·
Ak1 ⊗ 1n2n3 1n1 ⊗ Ak2 ⊗ 1n3 1n1n2 ⊗ A33

⎞
⎟⎟⎟⎠ .

REMARK 2.2. Lemma 2.4 also holds when Aij is an nj × mj matrix and xj is replaced
by a 1 × mj vector, where 1 ≤ i ≤ k and 1 ≤ j ≤ 3.

Note that these lemmas will be used to compute the number of times a t-tuple appears as a
row in an OA of strength t ; the lemmas are the backbone of our principal results. Sections 3
and 4 will propose new methods primarily for constructing asymmetric OAs from an initial
OA of strength r based on these lemmas and orthogonal partitions. Section 3 concerns cases
using the initial OA with r + 1 columns, while Section 4 concerns cases using the initial OA
with q (> r + 1) columns.

3. Construction of asymmetric OAs using an (r + 1)-column initial OA of strength r .
The objective of this section is to present the constructions of asymmetric OAs with high
strength by applying the above lemmas and orthogonal partitions of spaces and OAs. In par-
ticular, some of the run sizes of the resulting OAs are equal to the product of the top t highest
numbers of levels since the minimum run size of an OA with strength t is required to be the
least common multiple of products of any t different numbers of levels. Some examples of
new infinite families of OAs are presented. Since OAs with two or three levels are of partic-
ular interest to statistical applications, our arrays include primarily two or three levels along
with several higher levels.

For simplicity in the following descriptions, we introduce some notation. For a fixed posi-
tive integer j , let {Al1j j ,Al2j j , . . . ,Alkj j } be a set of u × v matrices. Three matrices

⎛
⎜⎜⎜⎝

Al1j j ⊗ 1n

Al2j j ⊗ 1n

· · ·
Alkj j ⊗ 1n

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1m ⊗ Al1j j

1m ⊗ Al2j j

· · ·
1m ⊗ Alkj j

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎝

1m ⊗ Al1j j ⊗ 1n

1m ⊗ Al2j j ⊗ 1n

· · ·
1m ⊗ Alkj j ⊗ 1n

⎞
⎟⎟⎟⎠

can be denoted by the symbols

(A[l1,l2,...,lk]j , n), (m,A[l1,l2,...,lk]j ) and (m,A[l1,l2,...,lk]j , n),

respectively, for positive integers m and n.

THEOREM 3.1. Let L = (lij ) be an initial OA(h, s1s2 · · · sr+1, r) with strength r ≥ 1.
Suppose that there exists an nj -dimensional space Z

nj
pj with an orthogonal partition of

strength tj , namely {A0j ,A1j , . . . ,A(sj−1)j }, where sj |pnj

j and tj ≥ 0, for 1 ≤ j ≤ r + 1.

Then the array Mr+1 = (A1,A2, . . . ,Ar+1) is an OA(h
∏r+1

j=1(p
nj

j /sj ),p
n1
1 · · ·pnr+1

r+1 , t),

where t = r + ∑r+1
j=1 tj and Aj = (

∏j−1
k=1(p

nk

k /sk),A[l1,l2,...,lh]j ,
∏r+1

k=j+1(p
nk

k /sk)).

As aforementioned, accompanying each theorem is an algorithm, and an example with
more details to illustrate the construction procedure. According to Theorem 3.1, Algo-
rithm 3.1 below is provided for constructing an OA(N,p

n1
1 · · ·pnv

v , t).

ALGORITHM 3.1. Step 1. According to the v numbers of levels p1, . . . , pv in the desired
OA, set the number of factors r + 1 = v and strength r = v − 1 for an initial OA L.
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Step 2. For j = 1, . . . , r + 1, specify space Z
nj
pj to be partitioned based on the parameters

pj and nj , and find an orthogonal partition {A0j , . . . ,A(sj−1)j } of strength tj of Z
nj
pj such

that r + ∑r+1
j=1 tj = t . Let the number of levels of the j th factor of L be sj , that is, L =

OA(h, s1 · · · sr+1, r).
Step 3. Place all of the orthogonal partitions {A0j , . . . ,A(sj−1)j } into the array Mr+1 =

(A1,A2, . . . ,Ar+1) in Theorem 3.1.

To increase the numbers of factors for the constructed OAs, we can search for OAs
to partition orthogonally. The following theorem extends Zn

p in Theorem 3.1 to an
OA(N,m1 · · ·mv, t), resulting in the arrays thus obtained having higher saturation percent-
ages.

THEOREM 3.2. Let L = (lij ) be an initial OA(h, s1 · · · sr+1, r) with strength r ≥ 1. Let
u ∈ {0,1, . . . , r} be a given integer. Suppose that there exists an nα-dimensional space Znα

pα

having an orthogonal partition with sα blocks of strength tα ≥ 0 for each α ∈ {1, . . . , u}.
Further, suppose there exists an orthogonal partition with sβ blocks of strength tβ ≥ 0 of
OA(Nβ,m1β · · ·mvββ, t) for any β ∈ {u + 1, . . . , r + 1} such that t = r + ∑r+1

j=1 tj . Then

there exists an OA(h
∏u

α=1(p
nα
α /sα)

∏r+1
β=u+1(Nβ/sβ),p

n1
1 · · ·pnu

u m1(u+1) · · ·mv(r+1)(r+1), t).

Our procedure for constructing an OA(N,p
n1
1 · · ·pnv

v , t) using Theorem 3.2 involves the
following three steps.

ALGORITHM 3.2. Step 1. For a fixed r ≤ t − 1 and each i = 1, . . . , v, decompose ni =∑r+1
j=1 nij such that there exists an OA(Nj ,p

n1j

1 · · ·pnvj
v , t), and its an orthogonal partition of

strength tj , or there exists an orthogonal partition of strength tj of a space Z
n1j
p1 × · · · × Z

nvj
pv ,

uniformly denoted by {A0j , . . . ,A(sj−1)j }, satisfying t = r +∑r+1
j=1 tj and making sj as large

as possible for j = 1, . . . , r + 1.
Step 2. Take an initial OA(h, s1 · · · sr+1, r) according to all sj ’s.
Step 3. Substitute all of the orthogonal partitions {A0j , . . . ,A(sj−1)j } into A1,A2, . . . ,

Ar+1 in the proof of Theorem 3.2 to produce the desired OA Mr+1.

The above theorems can not only construct new infinite families of OAs with various
strengths, larger sizes and flexibility in the choice of factor levels, but also give an insight
into the structure of the obtained OAs. Especially, Theorem 3.2 can be used for another
new method for the construction of OAs (iterative method, see Section 5). In the following
examples, new OAs can be obtained by taking the orthogonal partitions of the spaces and
OAs and carefully choosing the initial OA(h, s1 · · · sq, t) such that h/(s1 · · · sq) is as small
as possible. In Example 3.1, the run size of the constructed OAs is equal to the product of
the top n + 3 highest numbers of levels, that is, 22n+532 = 214n122. The constructed OAs in
Example 3.2 have more flexibility in the choice of parameters, such as the size, number of
factors, number of levels and strength. Here, we utilize the following example to illustrate the
application of Theorem 3.1.

EXAMPLE 3.1 (Construction of a new family of OA(22n+532,234n122, n + 3) for n ≥ 2).
Step 1. According to the three different numbers of levels, that is, 2, 4 and 12 in the desired
OA, set an initial OA L with three factors and strength 2.

Step 2. Specify and partition spaces Z3
2 , Zn

4 and Z2
12.

We can decompose Z3
2 into an orthogonal partition of strength 1. First, find a strength 1

OA(2,23,1), denoted by A01 = (a1, a2, a3). For instance, let a1 = a2 = a3 = R2. Second,
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take A11 = (a1, a2,1 + a3), A21 = (a1,1 + a2, a3) and A31 = (a1,1 + a2,1 + a3), where +
is the addition on Z2. Then {A01, . . . ,A31} is the orthogonal partition we need.

Similarly, let A02 = (b1, . . . , bn) = OA(4n−1,4n, n − 1). Take Ai2 = (b1, . . . , bn−1, i +
bn), where + is the addition on Z4 and i ∈ Z4. Then {A02, . . . ,A32} is an orthogonal partition
of strength n − 1 of Zn

4 .
In the same manner, we can find an orthogonal partition {Bi |Bi = (R12, i + R12), i ∈ Z12}

of strength 1 of Z2
12. Let Ai3 = (BT

3i ,B
T
3i+1,B

T
3i+2)

T for i ∈ Z4. Then {A03, . . . ,A33} is the
orthogonal partition of strength 1 of Z2

12.
Now, t = 2 + 1 + n − 1 + 1 = n + 3. Let the number of levels of each factor of the initial

OA be 4. Choose an initial OA(16,43,2) as

L =
⎛
⎝

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

⎞
⎠

T

.

Step 3. From the three sets {A0j , . . . ,A3j }, j = 1,2,3, we can obtain A1, A2 and A3. Then
the desired OA

M3 = (A1,A2,A3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A01 ⊗ 14n·9 12 ⊗ A02 ⊗ 136 12·4n−1 ⊗ A03
A01 ⊗ 14n·9 12 ⊗ A12 ⊗ 136 12·4n−1 ⊗ A13
A01 ⊗ 14n·9 12 ⊗ A22 ⊗ 136 12·4n−1 ⊗ A23
A01 ⊗ 14n·9 12 ⊗ A32 ⊗ 136 12·4n−1 ⊗ A33
A11 ⊗ 14n·9 12 ⊗ A02 ⊗ 136 12·4n−1 ⊗ A13
A11 ⊗ 14n·9 12 ⊗ A12 ⊗ 136 12·4n−1 ⊗ A03
A11 ⊗ 14n·9 12 ⊗ A22 ⊗ 136 12·4n−1 ⊗ A33
A11 ⊗ 14n·9 12 ⊗ A32 ⊗ 136 12·4n−1 ⊗ A23
A21 ⊗ 14n·9 12 ⊗ A02 ⊗ 136 12·4n−1 ⊗ A23
A21 ⊗ 14n·9 12 ⊗ A12 ⊗ 136 12·4n−1 ⊗ A33
A21 ⊗ 14n·9 12 ⊗ A22 ⊗ 136 12·4n−1 ⊗ A03
A21 ⊗ 14n·9 12 ⊗ A32 ⊗ 136 12·4n−1 ⊗ A13
A31 ⊗ 14n·9 12 ⊗ A02 ⊗ 136 12·4n−1 ⊗ A33
A31 ⊗ 14n·9 12 ⊗ A12 ⊗ 136 12·4n−1 ⊗ A23
A31 ⊗ 14n·9 12 ⊗ A22 ⊗ 136 12·4n−1 ⊗ A13
A31 ⊗ 14n·9 12 ⊗ A32 ⊗ 136 12·4n−1 ⊗ A03

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For n = 2, an apparently new OA(2932,2342122,5) can be constructed.

The following is an example of the use of Theorem 3.2.

EXAMPLE 3.2. Assume that an OA(N,p
n2
2 · · ·pnv

v , t) exists for t ≥ 3. Let p ≥ t be a
prime power and p|N . Then a new family of OA(Npt−1,pmp

n2
2 · · ·pnv

v , t) exists whenever
m = p + 1 if p is a power of 2 and t = 3, and m = p otherwise.

Step 1. For a fixed r = 1, decompose n1 = m + 0, ni = 0 + ni for i = 2, . . . , v. From
Theorems 3.1 and 3.2 and Property 7 on page 5 in Hedayat, Sloane and Stufken (1999), an
OA(pt ,pm, t) exists, and it can be divided into an orthogonal partition of strength t − 1,
say, {A01, . . . ,A(p−1)1}. Since p|N , there exists an orthogonal partition of strength 0 of the
OA(N,p

n2
2 · · ·pnv

v , t), say {A02, . . . ,A(p−1)2}.
Step 2. Let the initial OA be an OA(p,p2,1).
Step 3. From the orthogonal partitions {A0j , . . . ,A(p−1)j } for j = 1,2, A1 and A2 can be

generated easily. Then the desired OA Mr+1 follows.
Especially, when t = 3, N = 48, p2 = 3, n2 = 1, p3 = 2, n3 = 9 and p = 16, we can obtain

an OA(21231,29311617,3).
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Let t = 3, N = 40, p2 = 5, n2 = 1, p3 = 2, n3 = 6 and p = 8, the example yields an
OA(2951,265189,3).

For t = 4, N = 144, p2 = 3, n2 = 1, p3 = 2 and n3 = 6, with p = 9 and p = 16, we can
construct an OA(2438,263199,4) and an OA(21632,26311616,4), respectively.

In Examples 3.1 and 3.2, we can construct M1 = OA(2932,2342122,5) and M2 =
OA(2951,265189,3). As can be seen from the following comparison, these arrays are new
and cannot be obtained using previous methods.

(a) Hedayat, Sloane and Stufken (1999) and Hedayat, Stufken and Su (1996) constructed
symmetric OAs of high strength. Ji and Yin (2010) and Yin et al. (2011) proved the existence
of symmetric OAs of strength 3. However, both M1 and M2 are asymmetric OAs.

(b) Suen, Das and Dey (2001) and Suen and Dey (2003) proposed a general method for
mainly constructing asymmetric OAs of strengths 3 and 4. This method was later extended
by Zhang, Deng and Dey (2017) and Zhang, Zong and Dey (2016), but they obtained only
families of OAs with prime-power run sizes. However, neither of the run sizes of M1 and M2

is a prime power.
(c) Using difference schemes, Chen and Lei (2017) studied the construction of OAs with

strength 3. M1 has strength 5. M2 cannot be obtained through the use of such a method,
otherwise it can be written as the product of two arrays OA(29,2689,3) and OA(5,51,3).
However, the OA(29,2689,3) does not exist as far as is currently known.

(d) It can be seen that the OAs constructed by Schoen, Eendebak and Nguyen (2010) have
limited run sizes ≤ 64 for strength 3 and ≤ 168 for strength 4. However, it is obvious that the
run sizes of both M1 and M2 are greater than 168.

(e) Jiang and Yin (2013) obtained a family of OA(nt ,p1 · · ·pk, t). Neither of the run sizes
of M1 and M2 is a power of an integer.

(f) Neither M1 nor M2 can be obtained by the product construction method of Chen, Ji
and Lei (2014).

The proposed methods are different from (a), (b) and (c), since they do not rely on the
difference schemes and finite fields.

4. Construction of asymmetric OAs using q (> r +1)-column initial OA of strength r .
In this section, we study an extended construction of asymmetric OAs having more columns
for the same strength than the arrays in Section 3. We will use initial arrays with strength
r that have more than r + 1 columns. The orthogonal partitions of spaces required for the
proposed methods could be obtained using row permutations, and the orthogonal partitions
of OAs can be obtained mainly using Property 7 on page 5 in Hedayat, Sloane and Stufken
(1999) and the difference schemes in Hedayat, Stufken and Su (1996). Moreover, our theo-
rems also imply that the new OAs obtained in this study have useful orthogonal partitions.

THEOREM 4.1. Suppose that Lhq = (lij ) is an initial OA(h, s1s2 · · · sq, r) with r ≥ 1
and q > r + 1. Further, suppose there exists an nj -dimensional space Z

nj
pj with an or-

thogonal partition of strength tj , namely, {A0j ,A1j , . . . ,A(sj−1)j }, where tj ≥ 0 for j =
1,2, . . . , q . Then we can construct an OA(h

∏q
j=1(p

nj

j /sj ),p
n1
1 p

n2
2 · · ·pnq

q , t) where t =
min1≤j1<j2<···<jr+1≤q{tj1 + tj2 + · · · + tjr+1 + r}.

The following algorithm is performed to construct an OA(N,p
n1
1 · · ·pnv

v , t) in accordance
with Theorem 4.1.
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ALGORITHM 4.1. Step 1. Identify an initial OA with the number of factors q = v and
strength r < v − 1 according to the v numbers of levels p1, . . . , pv in the desired OA.

Step 2. For j = 1, . . . , q , specify space Z
nj
pj to be partitioned in terms of the parameters pj

and nj , find an orthogonal partition {A0j , . . . ,A(sj−1)j } of strength tj of Z
nj
pj , and select an

r such that min1≤j1<···<jr+1≤q{tj1 + · · · + tjr+1 + r} = t . Let the number of levels of the j th
factor of the initial OA be sj , j = 1, . . . , q . Take Lhq = OA(h, s1s2 · · · sq, r).

Step 3. Place all of the orthogonal partitions {A0j , . . . ,A(sj−1)j } into A1, . . . ,Aq in the
proof of Theorem 4.1 to produce the desired OA Mq .

Corollary 4.1 below immediately follows from Theorem 4.1.

COROLLARY 4.1. Under the condition of Theorem 4.1, we can obtain an symmetric

OA(h
∏q

j=1(p
nj /sj ),p

∑q
j=1 nj , t), if p1 = · · · = pq = p.

EXAMPLE 4.1 (A new family of OA(4s1+19s2p2,24p2(2s1)2(3s2)2,5) constructed for an
even p). The desired OA can be written as

OA
(
N,p

n1
1 · · ·pnv

v , t
) = OA

(
4s1+19s2p2,2222p2(

2s1
)2(

3s2
)2

,5
)
.

Step 1. According to the five numbers of levels 2, 2, p, 2s1 and 3s2 in the OA above, choose
an initial OA with five factors and strength r ≤ 3.

Step 2. Specify spaces Z2
2, Z2

2, Z2
p , Z2

2s1 and Z2
3s2 .

Now, {Ai1|Ai1 = (R2, i + R2), i ∈ Z2} is an orthogonal partition of strength 1 of Z2
2. Let

Ai2 = Ai1 for i ∈ Z2. Similarly, {Ai3|Ai3 = (0p/2 ⊕ Rp, ((p/2)i + Rp/2) ⊕ Rp), i ∈ Z2} is
an orthogonal partition of strength 1 of Z2

p .
We can find the orthogonal partitions {Ai4|Ai4 = (02s1−1 ⊕ R2s1 , (2s1−1i + R2s1−1) ⊕

R2s1 ), i ∈ Z2} and {Ai5|Ai5 = (03s2−1 ⊕ R3s2 , (3s2−1i + R3s2−1) ⊕ R3s2 ), i ∈ Z3} of strength
1 of Z2

2s1 and Z2
3s2 , respectively.

Since r = 2, we have t = min1≤j1<j2<j3≤5{2 + tj1 + tj2 + tj3} = 2 + 1 + 1 + 1 = 5 and
then take Lhq = OA(12,2431,2).

Step 3. Substitute the five orthogonal partitions {A0j ,A1j }, j = 1,2,3,4 and {A05,A15,

A25} into the array M5 = (A1,A2,A3,A4,A5).
Particularly, for p = 2, 4, 6, we can construct some apparently new OA(2632,2832,5),

OA(2832,263242,5), OA(2634,263262,5), respectively.

By arguments similar to those of Theorem 3.2, the following theorem will extend Zn
p

in Theorem 4.1 to an OA(N,m1 · · ·mv, t) to improve the saturation percentage of the con-
structed OA.

THEOREM 4.2. Let Lhq = (lij ) be an initial OA(h, s1 · · · sq, r) with strength r ≥ 1 and
q > r + 1. Let u ∈ {0,1, . . . , q − 1} be a given integer. Suppose an nα-dimensional space
Znα

pα
has an orthogonal partition with sα blocks of strength tα ≥ 0 for every α ∈ {1, . . . , u}.

Further, suppose there exists an orthogonal partition with sβ blocks of strength tβ ≥ 0 of
OA(Nβ,m1β · · ·mvββ, t) for each β ∈ {u + 1, . . . , q} such that t = min1≤j1<···<jr+1≤q{tj1 +
· · · + tjr+1 + r}. Then an OA(h

∏u
α=1(p

nα
α /sα)

∏q
β=u+1(Nβ/sβ),p

n1
1 · · ·pnu

u m1(u+1) · · · ×
mv(u+1)(u+1) · · ·m1q · · ·mvqq, t) exists.

Based on Theorem 4.2, we introduce Algorithm 4.2 for the construction of an OA(N,

p
n1
1 · · ·pnv

v , t) as follows.
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ALGORITHM 4.2. Step 1. For a fixed r , q (> r + 1) and each i = 1, . . . , v, de-
compose ni = ∑q

j=1 nij such that there exists an OA(Nj ,p
n1j

1 · · ·pnvj
v , t) and its an or-

thogonal partition of strength tj , or there exists an orthogonal partition of strength tj of
a space Z

n1j
p1 × · · · × Z

nvj
pv , uniformly denoted by {A0j , . . . ,A(sj−1)j } that satisfies t =

min1≤j1<j2<···<jr+1≤q{tj1 + tj2 +· · ·+ tjr+1 + r} with sj as large as possible for j = 1, . . . , q .
Step 2. Take the initial OA(h, s1 · · · sq, r) according to all sj ’s.
Step 3. Using all of the orthogonal partitions {A0j , . . . ,A(sj−1)j }, compute A1, . . . ,Aq in

the proof of Theorem 4.2, and the desired OA Mq results.

The following example illustrates the application of Theorem 4.2.

EXAMPLE 4.2 (A new family of OA(25p1p2p3,218p1
1p

1
2p

1
3,3) produced with p1, p2 and

p3 being odd primes that are greater than or equal to 5 and not all equal). Step 1. For fixed
r = 1 and q = 3, decompose n1 = n11 + n12 + n13 = 1 + 0 + 0, n2 = n21 + n22 + n23 =
0 + 1 + 0, n3 = n31 + n32 + n33 = 0 + 0 + 1, and n4 = n41 + n42 + n43 = 6 + 6 + 6. For
j = 1,2,3, there exists an OA(8pj ,26p1

j ,3) such that by juxtaposition, and using computer
search we can find its strength 1 orthogonal partition {A0j , . . . ,A3j }.

Step 2. Identify the initial OA(4,43,1).
Step 3. Using all of the orthogonal partitions {A0j , . . . ,A3j }, the desired new family of

OAs can be obtained.
In particular, for p1 = p2 = 5 and p3 = 7, the example yields an OA(255271,2185271,3).

Let p1 = 5, p2 = 7 and p3 = 11. Then there exists an OA(255171111,2185171111,3).

As constructed in Examples 3.1 and 3.2, neither of the two new families of OAs in Exam-
ples 4.1 and 4.2 can be obtained using previous methods. Moreover, the proposed OAs have
more flexible structures.

These examples are introduced only for the purpose of illustrating applications of our
methods. The newly constructed arrays are simply a small proportion of what can be obtained.
This is summarized in Tables 1 and 2. In Part I in the Supplement Material (Pang et al.
(2021)), Tables S1, S2 and S3 provide more detailed information for constructing these new
OAs of strengths 3, 4 and ≥ 5, respectively. Tight OAs are of substantial importance in the
design of experiments as optimal fractional factorial plans with the least number of runs.
Constructing such OAs and OAs with the maximum numbers of factors is always of high
interest. Table S4 in the Supplement Material (Pang et al. (2021)) presents further details
about the construction of new tight OAs and OAs with the largest possible numbers of factors.

5. Discussion and concluding remarks. A variety of designs resulted from OAs have
been recently applied to statistics, combinatorics and theoretical studies for information sci-
ence and computer science. OAs of high strength are sometimes more useful than OAs of
strength 2, as their characteristics allow us to study the interactions between two factors
and among three or more factors in the factorial designs. Some statisticians are also con-
cerned with how to use the orthogonality of OAs to deal with big data. However, OAs of
high strength, especially asymmetric OAs with factors whose numbers of levels are non-
prime powers, are still scarce. How to construct OAs of high strength of the sort required for
practical use remains an open problem. Zhang and his coauthors wrote a series of papers on
constructing OAs of strength 2 based on orthogonal decompositions of projection matrices
(Zhang (2007), Zhang, Lu and Pang (1999) and Zhang, Pang and Wang (2001)). The present
paper builds in part on those papers and proposes construction methods for high strength
(t ≥ 3) OAs based on orthogonal partitions of smaller OAs and spaces. Some of the ideas are
similar in facilitating the construction of larger OAs from smaller arrays.
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TABLE 1
Selective newly constructed OAs of strengths 3 and 4‡

OAs of strength 3 OAs of strength 4

OA(33n,39p
n1
1 · · ·pnv

v ,3) OA(29p1,2483p1,4)

3|n p
4 is odd

OA(2431p,21031p1,3) OA(310p3,35(27p)3,4)

p ≥ 5 is a prime p is an integer
OA(24p,210p1,3) OA(p6,pp+5,4)

p ≥ 5 is a prime p ≥ 4 is a prime power
OA(24p1p2,212p1

1p1
2,3) OA(2454p,2555(2p)1,4)

p1,p2 ≥ 5 are primes and p1 �= p2 p is odd and 5 � p
OA(2431p2,2761p3,3) OA(24p4,26pp,4)

p = 3,6,12,24 p = 5,7,11
OA(2633p2,21141(6p)3,3) OA(25p4,27pp+1,4)

p = 1,2,4,8 p ≥ 5 is a prime power

OA(2n+3p,22+2n+2
p1,3) OA(p6,p4(p2)2,4)

p ≥ 5 is a prime and n ≥ 1 p
2 > 3 is an odd prime power

OA(2n+351,22+2n+2
51,3) OA(ps1+2s2+2,p4(ps1)1(ps2)2,4)

n ≥ 1 p
2 (≥ 5) or p

5 (≥ 3) is a prime
OA(2ns2,2nss+1,3) OA(p5,p7,4)

s is a power of 2 p
2 (≥ 5) or p

5 (≥ 3) is a prime
Hn exists and s|2n OA(p6+q ,ppq+1,4)

OA(25p1p2p3,218p1
1p1

2p1
3,3) p ≥ 4 is a prime and 3 ≤ q ≤ p3 + 1

p1,p2,p3 ≥ 5 are odd primes OA(2831,244361,4)

and not all equal OA(76,713,4)

OA(2332,21232,3) OA(86,815,4)

OA(2432,2113241,3) OA(810,88(83)3,4)

OA(2551,264251,3) OA(216,21388,4)

OA(2571,264271,3) OA(2534,2735,4)

OA(2451,21051,3) OA(2435,2834,4)

OA(2471,21071,3) OA(2554,2455201,4)

OA(243151,2103151,3) OA(2554,274155,4)

OA(2452,2951101,3) OA(2474,2677,4)

OA(245171,2125171,3) OA(2474,2578,4)

OA(2731,293182,3) OA(2474,2477141,4)

OA(2551,21851,3) OA(213,2588,4)

OA(2532,2163161,3) OA(21351,2488101,4)

OA(2651,23451,3) OA(21351,2688,4)

OA(2135,21314,3) OA(2438,263199,4)

OA(2751,26651,3) OA(2438,2899,4)

OA(2433,273361,3) OA(2538,27910,4)

OA(2433,243441,3) OA(210,2483,4)

OA(2453,264156,3) OA(146,1441962,4)

OA(2373,2678,3) OA(186,1843242,4)

OA(2951,265189,3)

OA(21031,276189,3)

OA(21031,293189,3)

OA(21031,24314189,3)

OA(2971,22889,3)

OA(2971,267189,3)

OA(21231,29311617,3)

OA(255271,2185271,3)

OA(255171111,2185171111,3)

‡ Displayed on the website http://web.stat.nankai.edu.cn/mqliu/MOA/MixedOA.html.

http://web.stat.nankai.edu.cn/mqliu/MOA/MixedOA.html
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TABLE 2
Selective newly constructed OAs of strength t ≥ 5, tight OAs and OAs with the largest

possible numbers of factors‡

Tight OAs and OAs with the largest
OAs of strength t ≥ 5 possible numbers of factors

OA(p2p,p2(p+1),2p − 1) OA(2p2,2pp2,3)

p > 4 is a prime power Hp exists and 8 � p

OA(22n+532,234n122, n + 3) OA(2n+3p1,22+2n+2
p1,3)

n ≥ 2 p ≥ 5 is a prime and n ≥ 1

OA(Npt−1,pmp
n2
2 · · ·pnv

v , t) OA(2n+351,22+2n+2
51,3)

if p is a power of 2 and t = 3 n ≥ 1
m = p + 1, otherwise m = p OA(24p,210p1,3)

OA(p2s1+2s2+2,p4(ps1)2(ps2)2,5) p ≥ 5 is a prime
p
2 (≥ 5) or p

5 (≥ 1) is a prime OA(2532,212122,3)

OA(p9,p8(p2)2,5) OA(2552,220202,3)

p = 2 or p is not a prime power OA(2572,228282,3)

OA(4s1+19s2p2,24(2s1)2(3s2)2p2,5) OA(25112,244442,3)

p is even OA(253252,260602,3)

OA(p8,pp+7,5) OA(2451,21051,3)

p ≥ 7 is a prime power OA(2551,21851,3)

OA(p6,p8,5) OA(2651,23451,3)
p
2 (≥ 5) or p

5 (≥ 3) is a prime OA(2751,26651,3)

OA(p2+3m,p5m,7) OA(2471,21071,3)

when p = 5,7, m = 2
when p = 5,7,9, m = 3

OA(pp+5,p2(p+2),7)

p ≥ 4 is a power of 2
OA(pp+m+1,p2(p+1),2m + 1)

p ≥ 4 is a prime power
and 2 ≤ m ≤ p − 1

OA(p11+2m,p15+4m,7)

when p = 5,7,9, m = 0,1
when p = 11, m = 1

OA(p10+2m,p12+4m,8)

when p = 4,5,7, m = 0
when p = 4,5,7,9, m = 1,2
when p = 11, m = 2

OA(29,2344,5)

OA(2932,2342122,5)

OA(38,310,6)

OA(28,2642,5)

OA(212,2882,6)

OA(210,2682,5)

OA(29,2842,5)

OA(217,248,5)

OA(211,21682,5)

OA(211,21643,5)

‡ Displayed on the website http://web.stat.nankai.edu.cn/mqliu/MOA/MixedOA.html.

It is worth mentioning that the initial OA is one of the smaller arrays in each of the con-
struction methods. By initial, we mean existing and starting. An initial OA, along with other
ingredients, is necessarily used as the starting point of our construction. When constructing a

http://web.stat.nankai.edu.cn/mqliu/MOA/MixedOA.html
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new OA, we first need to choose a proper initial OA according to the parameters of the new
OA. The methods using initial OAs with r + 1 columns and of strength r are different from
those using initial OAs with q (> r + 1) columns and of strength r . Sometimes, choosing an
initial OA with r + 1 columns and of strength r to construct a new OA is easier and more
feasible than choosing an initial OA with q (> r + 1) columns, but at other times this is not
the case. The construction methods in Section 3 can be used if someone chooses an initial
OA with r + 1 columns and of strength r , otherwise, the methods in Section 4 can be used.
Theoretically, any OA including any of the new OAs we have constructed can be used as an
initial OA for constructing another new OA.

In this paper, several new construction methods of symmetric and asymmetric OAs with
high strength are proposed by using the lower strength orthogonal partitions. As a conse-
quence, we provide a solid answer to Research Problem 9.33 in Hedayat, Sloane and Stufken
(1999). Our methods have the following advantages.

1. The variety of spaces, OAs, and orthogonal partitions greatly increases the variety of the
asymmetric OAs obtained. Therefore, compared with the existing constructions, the proposed
methods have three favorable properties: various strengths, larger sizes and flexibility in the
choice of factor levels.

2. It is increasingly difficult to construct the following three families of OAs: symmetric
OAs with higher strength, high strength asymmetric OAs with all factor levels being prime
powers, and high strength asymmetric OAs with factor levels being nonprime powers. The
existing asymmetric OAs OA(N,p

n1
1 p

n2
2 · · ·pnv

v , t) are still scarce when pi is not a prime
power. Compared with Suen, Das and Dey (2001) and Suen and Dey (2003), we can construct
a number of asymmetric OAs having factors with nonprime power numbers of levels. For
example, OA(22n+532,234n122, n + 3) for n ≥ 2, OA(4s1+19s2p2,24(2s1)2(3s2)2p2,5) for
an even p, OA(2431p2,2761p3,3) for p = 3,6,12,24, OA(29p,2483p1,4) for odd p/4,
OA(ps1+2s2+2,p4(ps1)1(ps2)2,4) for prime p/2 (≥ 5) or p/5 (≥ 3). The newly proposed
methods are simple and easy to implement. The orthogonal partitions of spaces required for
our methods could be obtained using row permutations while the orthogonal partitions of
OAs can be obtained mainly using Property 7 on page 5 in Hedayat, Sloane and Stufken
(1999) and the difference schemes in Hedayat, Stufken and Su (1996).

3. Our theorems imply that the newly obtained OAs have useful orthogonal partitions.
In fact, the proposed methods in Theorems 3.2 and 4.2 are iterative. We can use OA1 to
construct OA2, and OA2 to construct OA3, etc. For example, let OA1 = OA(40,2651,3).
From Theorem 3.2, using OA(8,24,3) and an initial OA(4,42,1), we can construct a new
OA2 = OA(80,21051,3). Additionally, as a consequence of Theorem 3.2, the array has
an orthogonal partition of strength 1. Combining OA2 with OA(16,28,3) and an initial
OA(8,82,1), we can construct a new OA3 = OA(160,21851,3).

4. Applying our theorems and corollary can lead to many new OAs and their infinite
classes. The arrays obtained in this way have higher saturation percentages. Some existing
classes of tight arrays and the arrays with the maximal number of columns are easily obtained
as special cases. Such OAs are provided in Table S5 in the Supplement Material (Pang et al.
(2021)). Note that most tight OAs do not exist for the given parameters. For example, there
is only one tight OA among all the 53 OAs with run sizes ≤ 168 and strength 4 in Schoen,
Eendebak and Nguyen (2010). There exist only two tight OA(N, sk,4)’s with run sizes N <

7874496.
5. The newly constructed families of mixed-level OAs can be useful in design of experi-

ments. Symmetric and asymmetric OAs with strength t are often used for computer experi-
ments in the literature. For example, OA(N,pn, t) is used in sliced space-filling designs and
nested space-filing designs in Sun, Liu and Qian (2014) and OA(N,p

n1
1 · · ·pnv

v , t) for sliced
Latin hypercube designs in Yin, Lin and Liu (2014). Hedayat, Sloane and Stufken (1999)
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showed in Theorem 11.3 that the OA(N,p
n1
1 · · ·pnv

v , t) can be used to estimate main-effects
and interactions under the model Y = XU1γ1 + XU2γ2 + ε. For a design D, the generalized
word length pattern (A1(D),A2(D), . . . ,An(D)) has a close connection with the strength t

of an OA(N,p1 · · ·pv, t). The generalized minimum aberration criterion is to sequentially
minimize Aj(D) for j = 1, . . . , n in Jiang and Ai (2017), Xu and Wu (2001) and Zhou and
Xu (2014). As stated in Schoen, Eendebak and Nguyen (2010), for OAs with strength 3,
the estimates of the main effects are not correlated with interactions between any two other
factors, and OAs with strength t > 3 can be used to interpret active interaction components.
OA(N,p

n1
1 · · ·pnv

v , t) has recently been used in order-of-addition experiments (Peng, Muk-
erjee and Lin (2019) and Voelkel (2019)). On the other hand, existing asymmetric OAs of
high strength are scarce, also limiting their applications. With deep study of their construc-
tion methods, we expect that a large number of families of such OAs will be obtained. We
believe that they will be more and more widely applied to design of experiments.

In the future, we will investigate a general existence condition of the new families of
mixed-level OAs that can be constructed using the proposed methods to help readers decide
further whether an OA with particular parameters exists. Since the existence of asymmetric
OAs is currently still an open problem, it is of great interest to construct tight OAs or OAs with
the maximal number of factors. The results in this paper, especially the results on orthogonal
partition of OAs, might provide an important foundation for the construction of this class of
OAs. Some of the techniques used in this paper are also useful potentially for studying the
existence and construction of other designs.
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SUPPLEMENTARY MATERIAL

Supplement to “Construction of mixed orthogonal arrays with high strength” (DOI:
10.1214/21-AOS2063SUPP; .pdf). The online Supplementary Material contains two sections,
where Part I contains Tables S1–S5 and Part II provides all proofs of the lemmas and theo-
rems.
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